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OPTIMIZATION OF THE DESCENT MANEUVERS OF A SATELLITE MODULE FROM
PLANETARY ORBIT

S. N. Kirpichnikov

Let us consider a space vehicle moving along an elliptical /5
orbit in the field of gravitation of a spherically symmetrical pla~
net. The space vehicle consists of two parts: the recovery module
(module I) and the orbital module (module II). It is necessary to
construct a maneuver which is optimal in fuel consumption for the
descent of module I to the planet. The maneuver is implemented with
the use of a single initial pulse, applied to module I so that the
orbital module continues to travel in the initial orbit, while the
recovery module transfers to a trajectory of approach with the pla-
net. The maneuver concludes with the landing of module I after
re-entry into the dense atmospherici-layers. The planet may be with-
out atmosphere, but then the maneuver concludes with the hard touch-
down of module I with its surface. In the latter case, we should
everywhere equate the altitude of the atmosphere to zero.

The launch will imply the moment of the initial pulse. For /6
purposes of definition, the finish will imply the landing of module
I on the planet's surface. All the aforestated will, however, re-
main valid if we select: some other fixed moment between the re-

entry of the modEle I and the landing as our finish point.

The initial orbit of the space vehicle and the trajectory of
the recovery module right until its re-entry are considered to be
Keplerian; we will only examine elliptical descent orbits having
motion which is straight with respect to the initial orbit. It is
presumed that the earlier known angular range, altitude variation.
and time of motion in re—entry until the finish point are located

* Numbers in the margin indicate pagination in the foreign text.



in a planetocentric plane passing through the vector of velocity'

of module I during its re-entry.

With Tsiolkovsky's formula in mind, we will minimize the
characteristic velocity of the initial pulse, i.e., the modulus
of the pulse variation of velocity of module I.

In this study, the problem formulated is studied under comp-
lex limiting conditions. Notably incorporated are limitations on
the angle of re-entry and the distance between modules at the mo-
ment of finish. Moreover, condition of direct visibility between
modules or a more general limitation on the zenith distance of
module II at the finish point is taken into account; limitation on
the velocity of module I at the re-entry point may also be taken

into the calculation.

Following the method proposed by Ting Lu [1], it is easy to
prove that optimal descent orbits of these maneuvers, in all cases
of interest, must lie in the plane of the initial orbkit; therefore,
this study is restricted to the coplanar statement of the problem.

1. Mathematical Statement of the Froblem and General

Conclusions

In the plane of motion, let us introducé polar coordinates r,
6, with origin at the center of the planet so the direction of
positive reading of angle 6 coincides with the directipon of motion

with respect to the initial orbit.

In addition to Keplerian orbital elements: semimajor axis a,
eccentricity e and angular distance @ of the pericenter from the
polar axis we will consider the elements p, q introduced by the

formula

2
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Let Py Qyr B3¢ €9¢ Wy be parameters of initial orbit; p, 4, /7
a, e, w are parameters of the intermediate orbit of the descent
module. '

Let us designate the moment of time and the polar coordinates
of the start and re-entry points of module I by tl, Tyr wl and tz,
I, Wy, regpectively. It is obvious that

Ty = ¥p1 t Bapn’ (2)

atm—-altltude of dense layers of

the atmosphere. Let us introduce the parameter Pa in terms of the

where rplh—radius of the planet, h

formula

.
Py REEE (3)

[ U Y

Assumed that we are given chahge Ar of the polar radius, an-
gular range A6 and duration At of the flight of module I in the
re-entry layers to the finish point. Therefore, time t, of the
finish and the polar coordinates r,, 6, of the finish point will be

‘ ;:2 ; rﬁ"_:_‘Ar’ Rt
By=9y448,
=iyt AL

(4)

" If the finish implies the landing of module I on the surface
of the planet, then

At —

(5)

. ¢ .
P o e e

:.' 'Ar:ham? TZ:rnm



but if it is the module's re-entry, then

b Af= A ; ~ T e e
| r=A%=9,. -Y_Q,%Haﬁ &=4? - ;} o (6)

———— g

- .

For polar radii r; and r, we find

1= pi P cos Gyl =[P +pgcos B—ol | (7)

i- ‘ A—* : r'z_p;z_[p2+pqc03( -—‘D)]'l ’ 7"-:" - | j . iS)

The characteristic velocity AU of the~ initial pulse can be re-
duced to the form [2]

. o o -
AU=KAV, . . =
Ve Kﬁ '_m k (9}
- { T :_;fuﬂ.ﬁ,_ 7 =
’ S T S SO
. ' — 2“”_‘;:1)2 q1 cos (‘(}1‘—'0’1)}2 .- - . e el
5_ - \ 44-;-'—r«~' . e _‘ = iy T s ot - —
- ] (10)

where K--Causs' constant multiplied by the square root of the pla-
net's mass. For A V, differing only in the constant factor from

AU, we retain the name of characteristic velocity. /8

Théﬁslope o, of thrust during the initial pulse we will cal-
culate in the opposite direction of the transversal to the di-
rection of the pulse; then we will have

T a Plash o gsn (al-ﬂ | .
i ig &, (Pl‘—ﬁ) {px+ 71 €08 (h—awn)] : (11)

>~ - R

The signs of the numerator and denominator on the right side of (11)
coincide, respectively, with the signs of sin @t and cos QL.

Let us define the re-entry angle & as the angle between the
velocity vector of the recovery module and the plane of the local

4



hofizon at time tz:

e e .
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= ecfo g
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where U, and Uy are, respectively, radial and transversaltconstl-
tuents of velocity ﬁ" of module I at the moment it re-enters. The
values Ur’ Ug P Ure are defined by the formulas

a - ..

' o (13)
U,=Kgsin (9—w), 0, KB
7

KV (14)

[ _

~

Giver. a: moment in time ﬁz, the orbital module has a polar
radius r, and polar angle 63- For the latter values we find that

‘A

- Py —uw,

- d :
P(P+qcosv)3+KAt j e . (15}

. v]
82w 5. pﬂm+mcmv)

rs—[p1+p1q1 cos (ﬂa—wl)] . ‘ \
TP R AT e (16)

The distance 7 between modules at the moment of finish is
equal to

. T _:_ - - 1
% l:x[r§4~r%a-2r5r3cos(&3—~ﬂznff, !
S . {(17)

and the zenith‘distance z of module II at the finish point will be

it et ’ e .
b 2__2r3
* Z=arccos _ri’.#?_. . (18}
‘ 2!'9[ X
- —— e . o . - . : L]

These relationships show that we ma¥;tdke. the following as
the basic parameters defining descent maneuvers

- e (19)
[ pog by azr ¥ w,

1




which are dependent and satisfy the following constraints:

T - - 20)
‘P1 =p° +F'? cos (8 _"’)—Pl —P141 CO8 (3 “‘“1)':0 (
=P +pg cos (H—u)—p3=0,
-0 p 8w, J ' (21)
. b o
T 8 ,S plpt+gcosvf, +K A @,'_S‘ 71(pitgieosoyp 0.

g

(22)

. B
The unknown optimal descent maneuver will imply a maneuver to which

corresponds the lowest value of the chaxacteristic velocity AV.

Let us move to consider additional limitations

imi i Let us first
examine only limitations on the variables 1 and ¢. The re-entry
angle ¢ must lie within some given interval:

qJ . [} < @ Ao
min = ¥ 2 %nax

- {23)
The distance 1 between modules at the finish must not exceed a
set maximum value L: |

. Yegl. ;} (24)
After introducing the auxiliary substantial variables o, B,
we will write conditions (23}, (24) thus:
o - m T .
04*(‘1}1111!!_@) ((3) q)max)_ﬁt _O - (25)
s=1— L—[—B?—
T ° (26)
Therefore,

under:conditions (23), (24), the problem is mathe- -
matically reduced to minimization of function (10} in the set of
~substantial variables

v}
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(27)

which satisfy conditions (20)-(22), (25), (26). As we know, the
derivatives with respect to all variables in (27) from the Lagrange

function must be equal to zero

. I
L WS
i=

(28)

where A Az, ceey h5 are unknown constants.

1?

Analysis of the equatdion of the extremum corresponding to
variable B is equal to zero and the condition 1 = L is satisfied;
or else the unknown solution corresponds to a relative minimum of
function AV in an auxiliary prcoblem in which conditions (24), (26)
. are admittgd. Such systematic investigation is therefore recom-

mended.

1. Investigate the problem without taking into account the
limitations (23)-(26). Using the results of study [2] and a met-
hod analogous to that developed in article [3], we can easily show /10
that the sole stationary sclutions in the particular case are those
which are dervied in study [2] in the investigation of energetical-
ly optimal single~pulse flight between an elliptical initial and
circular final orbit. These solutions are characterized by apsi-
dal tangential conjunctions of the intermediate trajectories with
the initial orbit and a circle of radius r,. The trajectory:emer-
ging from the apocenter of the initial orbit always requires less
fuel consumption versus a trajectory emerging from the pericenter.

For both stationary solutions the equality

‘ =0 - *\‘ (29)

is fulfilled.



Point (29) generally lies beyond the interval of (23); we should
thus turn our search to the relative minimums of function AV, re-
taining only conditions (20)-(22) and angle @. The analysis and
solution of this problem for any fixed angle ¢ is contained in

study [3].

¢ = & (30)

min.

If from all sclutions derived at this stage there are those
for which inequality (24) is satisfactory, then by comparing the
characteristic velocities which correspond to them we find the
desired solution. Otherwise, when condition (24) is giolated in
all solutions, the desired optimal maneuver is characterized by
the equality ' .

° 1 =1L, . (31)
and we should go on to point 2.

2. Investigate a problem in which are retained the conditions
(20)-(22), (23), and inequality (24) is replaced by equality (31).
For numerical study we can use the methods developed in the next
section to define the optimal maneuver of descent for given values
of 1 and ¢. The interval [Qmin' m
of equal parts and for each point calculation of the optimal man-
euver is made. Then, by comparing functions AV, we® £find the ap-
proximate values of the angle & and the parameters of the desired
optimal maneuver. If the accuracy obtained is insufficient, a
localized specification of these approximate values may be carried
out by one of the methods of successive approximations.

.}

Let us now introduce, in addition to conditions (20)-(24),
limitations on the variables z and Ure' The problem of optimi-
zation of function AV, just as in point 2, does not yield to ana-
lytic study. For its numerical solution we can use methods de-

veloped in the next section for constructing an optimal maneuver
8 o

. breaks into a series of points



of descent of module I for fixed parameters 1 and ¢, which allows /11
consideration of these limitations on the variables 2z and U... The
definition of the desired solution’is done‘:as was, stated-.above'in.
peint 2, The only difference is that here two intervals break

nt Craxl e [2, (1 - el? ~ rye L],

and calculation is made on all pairs of points, wheréin one point

down into a series of parts [@mi

is selected from the interval of variation of angle &, and the
other from the interval of permissible values of distance l. This
approach is especially convenient where.great accuracy is.not re-
quired, but it is important to produce a picture of change in the
parameters of optimal maneuvers as a function of variations in

[»]
gquantities 1 and ¢.

2., Mathematical algorithm of constructing an optimal
descent maneuver for fixed wvalues of 1 and_@, 4

Below is a description of the methods used to solve this
problem under the assumption that are given the angle ¢ of reco-
very module re-entry and the distance 1 between the modules at the
moment of finish. Mathematically we must seek the smallest value
of function (10) in the set of variables (19) which satisfy con- |
ditions (12}, {(17), (20)-{22), wherein parameters 1 and ¢ are
knowns. This method permits consideration also of limita&ions on
variables z and Ure'

Let us consider that the initial orbit is not round, and the
inequalities which follow are fulfilled

»'M hra

¢ o _OiQ1<P11
S (32)
I r1n<l'+r'2, - . 7 (33)
r1a>£“;2, o (34)

(35)
where rlp = al(l - eq) and ¥ 1a = al(l + el)——distance of peri-
center and apocenter of initial orbit, respectively. Condition



(33) signifies that the initial orbit is situated wholly outside
the dense layers of the atmosphere.

-~ ~

If *ia <l-r1r,or Tip >1 + rz, then apparently the descent
maneuvers with a given distance 1 are generally impossible. The
cases of

'quéa
Ma=lmrep (36)
A Uiy 90 N

will not be discussed here, since for each of them a selected pro-

blem loses its extremal nature and becomes determinant.

Let us now state the methods, From equalities (12),’(21) /12
we find that
,u -.;%;E'—*’f;’ S 1;2“_.1‘
7= 2 ~—2pt+ i " \ (37)
S ) —PEIED
18 (Oy) == \ .
) T T (38)

where the signs of the numerator and denominator in the last for-
- mula coincide with the signs sin(e2 - w) and cos (B, .- w), res-

pectively.

Relationship (13) permits us to find that

ritri—12

By=0y— A parccos IR oy | (39)

2rary

and from egquality (20} we get

ﬁn(ﬂr_mdi;-—5¢y+ngjif?%@m¢g; ]
, s
mqm;%p=—hwﬂﬁgﬁ+%—ﬁ,
itéy :
=%1, . . (40)

10



by=p*— i, (41)

Henceforth, the symbols g,
tions of the parameters p, 0

él' 82, and w will imply func-
37 definable by relationships (37)-(41).
With such exception of variables, the remaining utknowns p, 0, must

3
satisfy the following inequalities:

e - | (42)
0<g<p, '
ritri-—12) <2r3;2, 2 o
b1+b2—-ba>0 (43)
e (44)

As a result of relationship (42), i.e., the supposition on the
ellipticity of the transitional orbit, condition (22) is reduced

to the form T A—0, '-iy
T (45)
whereof
[ -
A= KAt+a2[E2 E,—e(smEq—smEl)]—— .
e [m—Ey)—e {smE”)m—smEﬂ)}] (46)

where E;, E, and E{l); Eél) are eccentric anémalies of modules I

and II at time tl, t2 respectively. Eccentric anomalies are easily
calculated in terms of known formulas of elliptical motion. Time /13
ty -ty of motion before re~entry is calculated thus:

EX o

o
fz‘*fli'%('_ffg—f;—e (sin E,—sin ED]. (47

IL.et us now derive several inequalities and estimates which are

il



employed in numerical solution. Abové all, from conditioﬁ (42)

and the relationship

Ta

v

Tip! ‘48)

where r3-*planetocentric distance of the apocenter of the tran-
sitional orbit, we find that ‘

Pa < P L Bixr (49)
m posec ® C .

T T —— e e

= bk e e e e i - o —

‘ el (p F pa |
pro- | VSR Viaa). |

2 [pa—pi—p11]

- -],,_A____,_ ] T P e

(51)

Let us note that here, the necessary and sufficient condition (44)
of ihtersection of intermediate and initial orbits is replaced by
necessary condition (48), thus henceforth in our solution we should

take into account condition (48).

Relationship {43) and the apparent inequality

e, h ‘.

- B N (52)

produce - D rg;%r;gr_*;:— —— e I -
T (53)

where I e e
M Lol eyl ben), (54)
rﬁ'ﬂ$>_r;k: e R -_‘{ (55)

The latter inequétitj takes place due to relationships (34), (35).

Condition (53) defines two intervals, in which lie desired

values of the angle 0.:
12 %3



i B el i L

R L s ) AR (56)
: o T ¥ - . F .
T G IREL 0, 2, ‘\ 57)
where
: ) #'=w,4-arccos pu],'] : oy
f
L Meodarccosp, ] (58)
J .. - .-
AL L
Py = * Hy = T
gy Prq (59)
wherein it appears that
. Pj‘?‘ﬁzﬁ;:’;ﬂ;&‘(i',' pa=—1. ’ (60)

*

. “
The methods developed permit taking into account limitations

on the variables z and'Ure. Let us introduce the reguirement

| ‘z‘gzm;,,__ ' j (61)

: g e — —_—

where Zax is the prescribed miximum value of the zenith distance
of module II at the finish point at time t2. Then from formulas
(18) , (61) we yield

r3>’r3$’

(62)

T3e = V -+ F3-£2ryl cos Zmax-
‘ | o . (63)
Calculation of condition (62) now reduces to computation of the
value of r, in relationships (53)-(59) according to formula

- .
P ——— e ae

- (64)
Te=mMax {ry, [—7y, Ie).
IR AR ' 13



In the particular case where limitation (61) is the condition of
direct visibility between modules at the time of finish, the dis-

tance r becomes equal to

3*

AT V

P, l (65)

— g

Finally, the limitation on velocity U, e will adopte in the
form

U < Us (66)
‘'where the constant U is given. If we can ignore the velocity of
rotation of the atmosphere versus the value Ure' then condition
{66) is equivalent to the requirement that module I re-entry .velo-

city does not exceed some fixed value of U.

From relationships (14), (37), (66), we find that

-~ Kpsecd | ~_
pep p=SEEES pp, ! (67)

= o—— o

a o

and consequently, condition (66) will be taken into account if in-
equality (49) is replaced by

’ | ;‘\<P'§P**_- _ \ L ' (68)

Henceforth, if one or both limitations (62), (66) is intro-
duced, we will consider that the corresponding changes in inequa-
lities (49), (53)-(59) have been made.

Let us formulate the derived results. The problem of opti-

' mization was reduced to searching for parameter p from the inter-

val (49) and angle 63 in one of the regions (56), (57) so that con-
ditions (44), (45), were fulfilled and function AV had its lowest /15

14



It is convenient in optimization to select the parameter p as a
variable and the corresponding angle 63 to consider as lying in the
region (56), (57) =-- root of equation (45), for which conditions
(44) is f0lfilled.

According to the concrete selection of parameters Yy Yor

four forms of maneuver must be studied. Let us introduce the

guantity
B P
o 9 r Tt — 1 727‘-_]4 (69)
which adopts-the values j =1, 2, 3, 4 for these forms. The
descent trajectory for j =1, 3 (Y, = 1) differs from the tra-
jectory for j = 2, 4 (v, = -1) by the concrete selection of the

launch point in one of two points of intersection of the initial
and intermediate orbits. Thus, in one case, the flight trajec~
tory of module I will go beyond the initial area limited by the
initial orbit; in the other case, it will be totally within this
region. Furthermore, maneuvers j = 1,2 (Yl = 1) differ from man-
euvers j = 3, 4 (Yl = =-1) in the fact that at the moment of fin-
ish, in the first instance, the orbital module overtakes the de-
scent module, i.e., it has a greater polar angle. In the second,
however, the polar angle of the descent module is greater than
the polar angle of the orbital module. Let us note that with
this cgmparison, angles Qz, 93 should be brought to the inter-
val |6, - 084] 2 7.

Let us cite a brief description of a -computer:program which
employs the above algorithm.

I. A search is made of the approximate unknown value of the
parameter p by a global scanning of interval (49), which is broken

into n equal parts. For each point of division, all roots of

15



equation (45) are found which lie in areas (56), (57) and for which
condition (44) is fulfilled. In calculating the roots, rough con-
stant accuracies are taken, which ensures the'rapidity of opera-
tion of this unit of the program. Of the multitude of all selected
values of parameter p and its corresponding roots, the pair p, 83
are chosen to which corresponds the smallest value of function AV.

These values are taken as approximate optimal values.

II. The précise optimal value of variable p and other para-
meters of the desired maneuver are found. Let us note that the
value AV as a function of parameter p for optimal selection of root
65 can have!discontinuities of the first order and areas of nonexis-
tence, where in equation (45) there are generally no roots of the
necessary type. Due to the particular nature of the problem, the
specification of optimal values of the parameters to the producT
tion of a prescribed accuracy should be done by the method of suc-
cessive approximations. In each approximation, the interval between
two values of the parameter p, adjacent to the optimal value of the /16
preceeding approximation, is broken down into some prescribed num-
ber of parts and calculation is carried out for all points of di- |
vision. By comparison of the corresponding characteristic velo-
cities we determine the optimal value of the parameters of a given
approximation. For calculation of the roots of function A, we

take:i constants ensuring the prescribed accuracy of computations.

In conclusion, let us‘touch upon the procedure of calculating
roots of function (46) for any fixed value of parameter p. For
determinacy, we will limit ourselves to descent maneuvers, whose
total time t, - tl of maneuver is strictly less than the period
of motion along the initial orbit. Accordingly, we will calcul-
ate eccentric anomalies appearing in equality (45)-(47), bearing

in mind the condition

E]+2“>E‘2>E!, . . .
16 B4 95> B4 2r—3 5 B> £, (70)



where § is any prescribed small gquantity.

Areas (56), (57) are broken into N equal parts and for all

points of division the function A is calculated in succession.

Let us point out one aspect of this method. For any value of

the angle © we first determine the geometric picture of the

’
maneuver, i?e., the juxtaposition of orbits, and then select spé—
cific branches of the modules' flight along orbits from the con-
dition of fulfillment of inequalities (70). Thus, the cEitical
values of angle 83 can exist, to which corresponds the discontin-
uity of function E, - El,_if the flig?;)bran???s in the descent

2 - El ; if the switch-
ing took place on the trajectory of travel of module II. At

orbit+ are switched; and of function E

points of switching, one of the maximum values of the correspond-
ing functions is egqual to zero, and the magnitude of the discon-
tinuity is equal to 2m. It is easy to see that the roots of
funetion A may lie only at a finite distance from the critical
points. Let us select the number N so that the range of functions
E, - E/ Eél) -Eil)
vals (56), (57) does not exceed some constant A. The range of

in each segment of fine subdivision of inter-

functions in segments containing critical points will then be

at least 27 - A. By increasing N and selecting a constant A,

we can always fulfill condition A < 2m - A and thereby produce

a criterion which will permit us, by the magnitude of the range of
function & to judge whether or not switching occurred within the

segment.

Let us return to a description of the procedure of calcula-
ting roots. If at the boundaries of some segment of division of
intervals (56}, (57) function A has different signs, and its range
is less than the constant A, then within this segment is found thé

root of function A , which is calculated using a series of inter-

17



polations.

Let us pause on another aspect of the algorithm. If for any /17
value of 93 the condition (44) is violated, then we will say that
this valué is in the area of non-existence of function 4. When,
in selecting points from intervals (56), (57) we enter the range of
non-existence of function 4, then with the next division of the
given segment we suddenly find the boundary of the area of non-exis-
tence. In fulfilling the conditions of the presence of a root in
this area, the root is calculated by a series of interpolations.

A similar procedure is carried out when functions 4 move from
the area of nonexistence to values of angle 63 for which condition
(44) is fulfilled. '

After we have found all roots of function A for the para-
meter p, we selectwua root from them to which corresponds a smal-
ler value of function AV. With this concludes the determination
of roots of function A.

3. Numerical Example

As an example of the algorithm developed in-section 2, let
us consider the problem of sending from the space Vehicle;-the
sputnik Venus moving on an elliptical orbity-a probe (module I)
to study the upper layers of the atmosphere of Venus. Let us
minimize the fuel expenditure.

Let us choose the following elements of the initial orbit
of the spaée vehicle:

0=10000 x#, €,=098, w,=0° | ' (71)

R R —

The height of the pericenter of the orbit above Venus" surface will
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be 1,000 kilometers, while the height of the apocenter--6,600 km.
For numerical values of constants K and For let us use

K?=32423-10° xm3jcm?,
ry=6200 &ax. ;| _

(72)
Let us assume further that the moment of finish coincides with
the moment the probe enters the dense layers of atmosphere, then

.VArf:Abzﬁﬂiﬂf T _ (73)

e e et e s —————
L

Let us require that at the moment of finish, the values 1 and
¢" have prescribed values and are fulfilled the conditions of di-
rect visibility between the modules.

The calculations were performed on a M-20 computer. Two

distance values were selected
1 =1,200 km, 1 =1,600 km (74)

and the interval of variation of angle ¢ with spacing of 5° from
zero to 30° was considered. The results are given in Table 1 and
2. Let us note that for both distance values 1, the minimum
characteristic velocity as a function of the angle ¢ is attained
for several values of the angle ¢ £ (0°, 5), while this velocity
rapidly increases for ¢ > 10°. It is also of interest to note
that the velocity Ve for angles ¢ not exceeding 10-15% in op-
timal maneuvers virtually is independent of angle ¢ and is equal

to roughly 8.3 km/s.
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TABLE 1. PARAMETERS OF OPTIMAL MANEUVERS FOR 1 = 1,200 km
. t,-t U . km/s
e |i la, km e GZ BZ 6Z ® %g;/ ¢T P s?, 2 e
0° 319497.4 1 0.34721184°99 | 368°61 2995 8°61 | 0.348] 126°14] 5305 | 36°03] 8.394
5 3| 9170.7 | 0.3343{ 222783 | 355°63 | 350°25 15°74 {1 0,329] 149°09] 3259 | 34°32| 8.321
10 3( 8949.2 | 0.3488 | 228°52 { 339°73 | 3236°40 19°59 10.403] 156°54] 2787 } 20°80| 8.268
15 1| 8394.2]0.3616 | 245°54 { 330°91 | 331°27 | 31°62 |0.601] 163°91} 2055 2°21) 8.122
20 2| 7486.4 | 0.3782 | 281°72 | 331°32 | 333°69 56°05 | 1.080| 195°98} 1045 | 14°73] 7.828
25 21 7000.1 }0.4351 | 301°31 | 332°70 | 335°88 73°93 | 1.773] 214°39 645 | 19°83] 7.634
30 2]6760.9 ] 0,5051 | 311°70 | 334°02 | 337°69 85°85 | 2.4801 222°28] 468 |22°96) 7.526
TABLE 2. PARAMETERS OF OPTIMAL MANEUVERS FOR 1 = 1,600 km
t~t 2 ) km/a
® it a, km e 3 8 8 w Ay, o 2 v re’
J 2 A [ A . km/a T 8.
0° 319298.9 [ 0.3333 |1219°64 | 372°46 | 361°74 W12°46 0.268[ 156°68| 3589 |56°84] 8.350
5 319321.2 10,3448 | 214°01 | 350°65 | 340°66 g10°29 0.261] 167°25] 3491 {52°26] 8.355
10 319172.4 10.3633 ] 212°90 | 333°36 | 325°39 11°92]0.328| 167°40] 3276 |40°44| 8.321
15 318888.310.3903 216°58 | 319°84 | 315°04 16°38]0.453| 166°52| 2918 [23°71| 8.253
20 118458.2 | 0.4242 | 222°85 | 310°42 | 310742 24°1510.655| 162°30; 2553 | 1°02| 8.140
25 2 17698.6 10.4580 | 249°41 ) 309°20 | 312°42 41°54|1.003| 180°46| 1580 [15°80( 7.904
30 2 17026.9 10.5103 §270°74 |310°54 | 315°59 59°02]|1.552| 197°20] 999 |24°99]| 7.645
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